Dynamics of 21st Century Engineering Design: A Panacea to Durable, Sustainable, Stable and Lasting Pavements

Authors

  • Kufre Primus Okon * * Department of Civil Engineering Technology, Akwa Ibom State Polytechnic, Ikot Osurua, Nigeria.
  • Edidiong Okokon Mkpa Department of Civil Engineering Technology, Akwa Ibom State Polytechnic, Ikot Osurua, Nigeria.
  • Udeme Asuquo Udo Civil Engineering Department, Akwa Ibom State Ministry of Works, Uyo

https://doi.org/10.48314/jcase.v2i1.33

Abstract

Traditional pavement design practices often fall short of meeting the challenges posed by increasing traffic volumes, changing weather patterns, and limited resources. As a result, many pavements suffer from premature deterioration, leading to costly repairs and disruptions to transportation networks. There is a pressing need for innovative engineering solutions that can address these challenges. This research employed a qualitative research methodology, which involved a review of existing literature on pavement design and construction. The review included studies on innovative engineering technologies and best practices in pavement design. The methodology also included an analysis of the factors that contribute to pavement deterioration, such as traffic loads, environmental conditions, and material properties. The findings revealed that the adoption of advanced engineering principles and technologies can significantly improve the durability, sustainability, stability, and longevity of pavements. For example, the use of high-performance materials, such as fiber-reinforced concrete and warm-mix asphalt, can enhance the strength and resilience of pavements, reducing the risk of cracking and rutting. Similarly, innovative construction techniques, such as intelligent compaction and laser-guided paving, can improve the quality and uniformity of pavements, leading to longer service life and reduced maintenance costs. The results suggest that by incorporating these advanced engineering solutions, it is possible to create pavements that are not only more durable and sustainable but also more cost-effective and environmentally friendly.

Keywords:

Engineering design, Pavements, Traffic loads, Cost-effectiveness, Sustainability, Stability

References

  1. [1] Mazzetto, S. (2024). Interdisciplinary perspectives on agent-based modeling in the architecture, engineering, and construction industry: a comprehensive review. Buildings, 14(11), 3480. https://doi.org/10.3390/buildings14113480

  2. [2] Allen, J. K., Commuri, S., Jiao, R., Milisavljevic-Syed, J., Mistree, F., Panchal, J., & Schaefer, D. (2021). Special issue: design engineering in the age of industry 4.0. Journal of mechanical design, 143(7), 70801. https://doi.org/10.1115/1.4047348

  3. [3] Shahjalal, M., Yahia, A. K. M., Morshed, A. S. M., & Tanha, N. I. (2024). Earthquake-resistant building design: innovations and challenges. Global mainstream journal of innovation, engineering & emerging technology, 3(04), 101–119. https://doi.org/10.62304/jieet.v3i04.209

  4. [4] Malik, A., & Keshrwani, R. S. (2023). Advancement of pavement strength to prevent frequent failures: models for rural roads. Universal research reports, 10(4), 116–126. https://urr.shodhsagar.com/index.php/j/article/view/1148

  5. [5] Li, M., Zhang, W., Wang, F., Li, Y., Liu, Z., Meng, Q., … & Zhang, J. (2024). A state-of-the-art assessment in developing advanced concrete materials for airport pavements with improved performance and durability. Case studies in construction materials, 21, e03774. https://doi.org/10.1016/j.cscm.2024.e03774

  6. [6] Tian, Z. (2022). Application of computer 3D modeling technology in the simulation design of modern garden ecological landscape. Mathematical problems in engineering, 2022(1), 7033261. https://doi.org/10.1155/2022/7033261

  7. [7] Xing, K., Xia, Y., & Song, Y. (2024). Optimization of computer aided design technology based on support vector machine in landscape art design. Computer-aided design and applications, 21(S14), 252–266. https://doi.org/10.14733/cadaps.2024.S14.252-266

  8. [8] Plati, C. (2019). Sustainability factors in pavement materials, design, and preservation strategies: A literature review. Construction and building materials, 211, 539–555. https://doi.org/10.1016/j.conbuildmat.2019.03.242

  9. [9] Simões, D., Almeida Costa, A., & Benta, A. (2017). Preventive maintenance of road pavement with microsurfacing—an economic and sustainable strategy. International journal of sustainable transportation, 11(9), 670–680. https://doi.org/10.1080/15568318.2017.1302023

  10. [10] Abellán-García, J., Carvajal Muñoz, J. S., & Ramírez-Munévar, C. (2024). Application of ultra-high-performance concrete as bridge pavement overlays: literature review and case studies. Construction and building materials, 410, 134221. https://doi.org/10.1016/j.conbuildmat.2023.134221

  11. [11] Makul, N. (2020). Advanced smart concrete - a review of current progress, benefits and challenges. Journal of cleaner production, 274, 122899. https://doi.org/10.1016/j.jclepro.2020.122899

  12. [12] Chandrappa, A. K., & Biligiri, K. P. (2016). Pervious concrete as a sustainable pavement material-research findings and future prospects: A state-of-the-art review. Construction and building materials, 111, 262–274. https://doi.org/10.1016/j.conbuildmat.2016.02.054

  13. [13] Ndon, A.-I. E., & Ikpe, A. E. (2020). Evaluation of the effects of different additives on compressive strength of clay-based concrete admixtures. Applied journal of environmental engineering science, 6(4), 436-451. https://doi.org/10.48422/IMIST.PRSM/ajees-v6i4.23971

  14. [14] Asres, E., Ghebrab, T., & Ekwaro-Osire, S. (2022). Framework for design of sustainable flexible pavement. Infrastructures, 7(1), 6. https://doi.org/10.3390/infrastructures7010006

  15. [15] Zhang, A. A., Shang, J., Li, B., Hui, B., Gong, H., Li, L., ... & Cheng, H. (2024). Intelligent pavement condition survey: overview of current researches and practices. Journal of road engineering, 4(3), 257–281. https://doi.org/10.1016/j.jreng.2024.04.003

  16. [16] Manuka, D. A., & Kuleno, M. M. (2019). Suitability and cost-wise comparative analysis of rigid and flexible pavements: a review. International journal of engineering applied sciences and technology, 04(06), 20–28. https://doi.org/10.33564/ijeast.2019.v04i06.004

  17. [17] Khodary, F., Akram, H., & Mashaan, N. (2020). Behaviour of different pavement types under traffic loads using finite element modelling. International journal of civil engineering and technology (IJCIET), 11(11), 40–48. https://doi.org/10.34218/ijciet.11.11.2020.004

  18. [18] Hassani, A., Taghipoor, M., & Karimi, M. M. (2020). A state of the art of semi-flexible pavements: Introduction, design, and performance. Construction and building materials, 253, 119196. https://doi.org/10.1016/j.conbuildmat.2020.119196

  19. [19] Maadani, O., Shafiee, M., & Egorov, I. (2021). Climate change challenges for flexible pavement in canada: An overview. Journal of cold regions engineering, 35(4), 3121002. https://doi.org/10.1061/(asce)cr.1943-5495.0000262

  20. [20] Mohod, M. V, & Kadam, K. N. (2016). A comparative study on rigid and flexible pavement: A review. IOSR journal of mechanical and civil engineering (IOSR-JMCE), 13(3), 84–88. http://dx.doi.org/10.9790/1684-1303078488

  21. [21] Qiao, Y., Dawson, A. R., Parry, T., Flintsch, G., & Wang, W. (2020). Flexible pavements and climate change: A comprehensive review and implicatio. Sustainability, 12(3), 1057. https://doi.org/10.3390/su12031057

  22. [22] Bayraktarova, K., Eberhardsteiner, L., Zhou, D., & Blab, R. (2022). Characterisation of the climatic temperature variations in the design of rigid pavements. International journal of pavement engineering, 23(9), 3222–3235. https://doi.org/10.1080/10298436.2021.1887486

  23. [23] Ziar, A., Ulfat, S., Serat, Z., & Armal, M. A. (2024). Cost-effectiveness analysis of design methods for rigid and flexible pavement: A case study of urban road. Archives of advanced engineering science, 2(3), 134–141. https://ojs.bonviewpress.com/index.php/AAES/article/view/1264

  24. [24] Salehi, S., Arashpour, M., Kodikara, J., & Guppy, R. (2021). Sustainable pavement construction: A systematic literature review of environmental and economic analysis of recycled materials. Journal of cleaner production, 313, 127936. https://doi.org/10.1016/j.jclepro.2021.127936

  25. [25] Suryawanshi, A. A., & Pale, P. (2022). A review on a study of importance in base and sub-base layers of road pavement. International journal of advances in engineering and management (IJAEM), 4, 1456. https://doi.org/10.35629/5252-040514561458

  26. [26] Yeganeh, A., Vandoren, B., & Pirdavani, A. (2024). Automated trucks’ impact on pavement fatigue damage. Applied sciences, 14(13), 5552. https://doi.org/10.3390/app14135552

  27. [27] Llopis-Castelló, D., García-Segura, T., Montalbán-Domingo, L., Sanz-Benlloch, A., & Pellicer, E. (2020). Influence of pavement structure, traffic, and weather on urban flexible pavement deterioration. Sustainability, 12(22), 1–20. https://doi.org/10.3390/su12229717

  28. [28] Mallick, R. B., & El Korchi, T. (2017). Maintenance and rehabilitation of pavements: pavement management systems. In Pavement management systems (pp. 595–617). CRC press. http://dx.doi.org/10.1201/9781315119205-20

  29. [29] Pasindu, H. R., Gamage, D. E., & Bandara, J. M. S. J. (2020). Framework for selecting pavement type for low volume roads. Transportation research procedia, 48, 3924–3938. https://doi.org/10.1016/j.trpro.2020.08.028

  30. [30] Nik Daud, N. N., Jalil, F. N. A., Celik, S., & Albayrak, Z. N. K. (2019). The important aspects of subgrade stabilization for road construction. IOP conference series: materials science and engineering (pp. 12005). IOP Publishing. http://dx.doi.org/10.1088/1757-899X/512/1/012005

  31. [31] Selsal, Z., Karakas, A. S., & Sayin, B. (2022). Effect of pavement thickness on stress distribution in asphalt pavements under traffic loads. Case studies in construction materials, 16, e01107. https://doi.org/10.1016/j.cscm.2022.e01107

  32. [32] Lozano Domínguez, J. M., Mateo Sanguino, T. J., Redondo González, M., & Davila Martin, J. M. (2024). Improving road safety through a novel crosswalk: comprehensive material study with photoluminescent resin. Engineering science and technology, an international journal, 57, 101793. https://doi.org/10.1016/j.jestch.2024.101793

  33. [33] Shtayat, A., Moridpour, S., Best, B., Shroff, A., & Raol, D. (2020). A review of monitoring systems of pavement condition in paved and unpaved roads. Journal of traffic and transportation engineering (english edition), 7(5), 629–638. https://doi.org/10.1016/j.jtte.2020.03.004

  34. [34] Liu, Y., Su, P., Li, M., You, Z., & Zhao, M. (2020). Review on evolution and evaluation of asphalt pavement structures and materials. Journal of traffic and transportation engineering (english edition), 7(5), 573–599. https://doi.org/10.1016/j.jtte.2020.05.003

  35. [35] Vásquez-Varela, L. R., & García-Orozco, F. J. (2021). An overview of asphalt pavement design for streets and roads. Revista facultad de ingeniería universidad de antioquia, (98), 10–26. https://doi.org/10.3390/coatings9020126

  36. [36] Su, N., Xiao, F., Wang, J., & Amirkhanian, S. (2017). Characterizations of base and subbase layers for mechanistic-empirical pavement design. Construction and building materials, 152, 731–745. https://doi.org/10.1016/j.conbuildmat.2017.07.060

  37. [37] Underwood, B. S. (2021). A method to select general circulation models for pavement performance evaluation. International journal of pavement engineering, 22(2), 134–146. https://doi.org/10.1080/10298436.2019.1580365

  38. [38] Ahmed, F., Thompson, J., Kim, D., Huynh, N., & Carroll, E. (2023). Evaluation of pavement service life using AASHTO 1972 and mechanistic-empirical pavement design guides. International journal of transportation science and technology, 12(1), 46–61. https://doi.org/10.1016/j.ijtst.2021.11.004

  39. [39] Hatoum, A., Khatib, J., & Elkordi, A. (2024). Comparison of flexible pavement designs: mechanistic-empirical (NCHRP1-37A) versus empirical (AASHTO 1993) flexible pavement design using available local calibration models. Transportation infrastructure geotechnology, 11(2), 810–832. https://doi.org/10.1007/s40515-023-00305-2

  40. [40] Li, Q., Xiao, D. X., Wang, K. C. P., Hall, K. D., & Qiu, Y. (2011). Mechanistic-empirical pavement design guide (MEPDG): a bird’s-eye view. Journal of modern transportation, 19, 114–133. https://doi.org/10.1007/BF03325749

  41. [41] Papagiannakis, A. T. (2013). Mechanistic-empirical pavement design; a brief overview. Geotechnical engineering journal of the seags & agssea, 44(1). https://www.researchgate.net/publication/276331263

  42. [42] Zaumanis, M., Poulikakos, L. D., & Partl, M. N. (2018). Performance-based design of asphalt mixtures and review of key parameters. Materials and design, 141, 185–201. https://doi.org/10.1016/j.matdes.2017.12.035

  43. [43] Fang, M., Park, D., Singuranayo, J. L., Chen, H., & Li, Y. (2019). Aggregate gradation theory, design and its impact on asphalt pavement performance: a review. International journal of pavement engineering, 20(12), 1408–1424. https://doi.org/10.1080/10298436.2018.1430365

  44. [44] Nguyen, D. H., Sebaibi, N., Boutouil, M., Leleyter, L., & Baraud, F. (2014). A modified method for the design of pervious concrete mix. Construction and building materials, 73, 271–282. https://doi.org/10.1016/j.conbuildmat.2014.09.088

  45. [45] DeRousseau, M. A., Kasprzyk, J. R., & Srubar, W. V. (2018). Computational design optimization of concrete mixtures: A review. Cement and concrete research, 109, 42–53. https://doi.org/10.1016/j.cemconres.2018.04.007

  46. [46] Cafiso, S., Montella, A., D’Agostino, C., Mauriello, F., & Galante, F. (2021). Crash modification functions for pavement surface condition and geometric design indicators. Accident analysis and prevention, 149, 105887. https://doi.org/10.1016/j.aap.2020.105887

  47. [47] El-Hakim, M. Y., & Tighe, S. L. (2012). Sustainability of perpetual pavement designs: Canadian perspective. Transportation research record, 2304(1), 10–16. https://doi.org/10.3141/2304-02

  48. [48] Nikolaides, A. F. (2016). Sustainable and long life flexible pavements. In Functional pavement design (pp. 693–704). CRC press. http://dx.doi.org/10.1201/9781315643274-77

  49. [49] Gomes Correia, A., Winter, M. G., & Puppala, A. J. (2016). A review of sustainable approaches in transport infrastructure geotechnics. Transportation geotechnics, 7, 21–28. https://doi.org/10.1016/j.trgeo.2016.03.003

  50. [50] Welch, J. F., Alhassan, M. A., & Amaireh, L. K. (2012). Analysis and design of arch-type pedestrian bridge for static and dynamic loads. Journal of advanced science and engineering research, 2(3), 191–207. https://www.sign-ific-ance.co.uk/index.php/JASER/article/view/280/283

  51. [51] Hällmark, R., & Collin, P., & Nilsson, M. (2009). Prefabricated composite bridges. IABSE symposium report, 96(9), 107–117. https://doi.org/10.2749/222137809796078748

  52. [52] Yoo, P. J., & Al-Qadi, I. L. (2007). Effect of transient dynamic loading on flexible pavements. Transportation research record, 1990(1), 129–140. https://doi.org/10.3141/1990-15

  53. [53] Rosato, D., & Rosato, D. (2003). Plastics engineered product design. Elsevier. https://doi.org/10.1016/B978-1-85617-416-9.X5000-5

  54. [54] Titus-Glover, L., & Von Quintus, H. (2019). Impact of environmental factors on pavement performance in the absence of heavy loads. Technical report FHWA-HRT-16-084 Federal highway administration. https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/16084/16084.pdf

  55. [55] Iwaro, J., & Mwasha, A. (2013). The impact of sustainable building envelope design on building sustainability using integrated performance model. International journal of sustainable built environment, 2(2), 153–171. https://doi.org/10.1016/j.ijsbe.2014.03.002

  56. [56] Alsheyab, M. A., Khasawneh, M. A., Abualia, A., & Sawalha, A. (2024). A critical review of fatigue cracking in asphalt concrete pavement: a challenge to pavement durability. Innovative infrastructure solutions, 9(10), 1–34. https://doi.org/10.1007/s41062-024-01704-1

  57. [57] Amakye, S. Y. O., Abbey, S. J., & Booth, C. A. (2022). Road pavement defect investigation using treated and untreated expansive road subgrade materials with varying plasticity index. Transportation engineering, 9, 100123. https://doi.org/10.1016/j.treng.2022.100123

  58. [58] Suryanarayana, T., Laxmikanth, C., Gezahegn, D., Seid, A., Assefa, E. (2021). Assessment of road pavement failure and rehabilitation. International journal of applied research, 7(3), 61–69. https://www.allresearchjournal.com/archives/?year=2021&vol=7&issue=3&part=B&ArticleId=8354

  59. [59] Shatnawi, N., Obaidat, M. T., & Al-Mistarehi, B. (2021). Road pavement rut detection using mobile and static terrestrial laser scanning. Applied geomatics, 13(4), 901–911. https://doi.org/10.1007/s12518-021-00400-4

  60. [60] Deilami, S., & White, G. (2020). Review of reflective cracking in composite pavements. International journal of pavement research and technology, 13(5), 524–535. https://doi.org/10.1007/s42947-020-0332-5

  61. [61] Shin, S. P., Kim, K., & Le, T. H. M. (2024). Feasibility of advanced reflective cracking prediction and detection for pavement management systems using machine learning and image detection. Buildings, 14(6), 1808. https://doi.org/10.3390/buildings14061808

  62. [62] Taylor, P. C., & Voigt, G. F. (2007). Integrated materials and construction practices for concrete pavement: A state-of-the-practice manual (No. FHWA HIF-07-004). United states. Federal highway administration. office of pavement technology. https://rosap.ntl.bts.gov/view/dot/42865

  63. [63] Baba, S. N., & Singh, E. B. (2023). Identification of problems faced in road maintenance. International journal of innovative research in engineering & management, 10(3), 29–37. https://acspublisher.com/journals/index.php/ijirem/article/view/10216

  64. [64] Schnebele, E., Tanyu, B. F., Cervone, G., & Waters, N. (2015). Review of remote sensing methodologies for pavement management and assessment. European transport research review, 7(2), 1–19. http://dx.doi.org/10.1007/s12544-015-0156-6

  65. [65] Sukur, K. M., Nordin, R. M., Jaluddin, S. N., & Yacob, R. (2023). Influence of poor drainage system on durability of the road pavement. AIP conference proceedings (Vol. 2881, No. 1). AIP publishing. http://dx.doi.org/10.1063/5.0167960

  66. [66] Chu, X., Campos-Guereta, I., Dawson, A., & Thom, N. (2023). Sustainable pavement drainage systems: subgrade moisture, subsurface drainage methods and drainage effectiveness. Construction and building materials, 364, 129950. https://doi.org/10.1016/j.conbuildmat.2022.129950

  67. [67] Warith, K. A. A., Anastasopoulos, P. C., Seidel, J. C., & Haddock, J. E. (2015). Simple empirical guide to pavement design of low-volume roads in Indiana. Transportation research record, 2472(1), 29–39. https://doi.org/10.3141/2472-04

  68. [68] Nwakaire, C. M., Yap, S. P., Onn, C. C., Yuen, C. W., & Ibrahim, H. A. (2020). Utilisation of recycled concrete aggregates for sustainable highway pavement applications; a review. Construction and building materials, 235, 117444. https://doi.org/10.1016/j.conbuildmat.2019.117444

  69. [69] Aziz, M. M. A., Rahman, M. T., Hainin, M. R., & Bakar, W. A. W. A. (2015). An overview on alternative binders for flexible pavement. Construction and building materials, 84, 315–319. https://doi.org/10.1016/j.conbuildmat.2015.03.068

  70. [70] Gautam, P. K., Kalla, P., Jethoo, A. S., Agrawal, R., & Singh, H. (2018). Sustainable use of waste in flexible pavement: A review. Construction and building materials, 180, 239–253. https://doi.org/10.1016/j.conbuildmat.2018.04.067

  71. [71] Pranav, S., Aggarwal, S., Yang, E. H., Kumar Sarkar, A., Pratap Singh, A., & Lahoti, M. (2020). Alternative materials for wearing course of concrete pavements: A critical review. Construction and building materials, 236, 117609. https://doi.org/10.1016/j.conbuildmat.2019.117609

  72. [72] Xie, N., Akin, M., & Shi, X. (2019). Permeable concrete pavements: A review of environmental benefits and durability. Journal of cleaner production, 210, 1605–1621. https://doi.org/10.1016/j.jclepro.2018.11.134

  73. [73] Rout, M. D., Biswas, S., Shubham, K., & Sinha, A. K. (2023). A systematic review on performance of reclaimed asphalt pavement (RAP) as sustainable material in rigid pavement construction: current status to future perspective. Journal of building engineering, 76, 107253. https://doi.org/10.1016/j.jobe.2023.107253

  74. [74] Aytekin, B., & Mardani-Aghabaglou, A. (2022). Sustainable materials: A review of recycled concrete aggregate utilization as pavement material. Transportation research record, 2676(3), 468–491. https://doi.org/10.1177/03611981211052026

  75. [75] Zapata, C. E., Witczak, M. W., Houston, W. N., & Andrei, D. (2007). Incorporation of environmental effects in pavement design. Road materials and pavement design, 8(4), 667–693. https://doi.org/10.1080/14680629.2007.9690094

  76. [76] Autelitano, F., Garilli, E., & Giuliani, F. (2020). Criteria for the selection and design of joints for street pavements in natural stone. Construction and building materials, 259, 119722. https://doi.org/10.1016/j.conbuildmat.2020.119722

  77. [77] Di Mascio, P., Loprencipe, G., & Moretti, L. (2019). Technical and economic criteria to select pavement surfaces of port handling plants. Coatings, 9(2), 126. https://doi.org/10.3390/coatings9020126

  78. [78] Gkyrtis, K., & Pomoni, M. (2024). An overview of the recyclability of alternative materials for building surface courses at pavement structures. Buildings, 14(6), 1571. https://doi.org/10.3390/buildings14061571

  79. [79] Al-Qadi, I., Lahouar, S., Loulizi, A., Elseifi, M. A., & Wilkes, J. A. (2004). Effective approach to improve pavement drainage layers. Journal of transportation engineering, 130(5), 658–664. https://doi.org/10.1061/(ASCE)0733-947X(2004)130:5(658)

  80. [80] Lambert, J. P., Fleming, P. R., & Frost, M. W. (2008). The assessment of coarse granular materials for performance based pavement foundation design. International journal of pavement engineering, 9(3), 203–214. https://doi.org/10.1080/10298430701409392

  81. [81] Romanoschi, S. A., & Metcalf, J. B. (2001). Characterization of asphalt concrete layer interfaces. Transportation research record, 1778(1), 132–139. https://doi.org/10.3141/1778-16

  82. [82] Yao, J., Zhou, Z., & Zhou, H. (2019). Functional layer materials of and preventive maintenance materials of pavement. Highway engineering composite material and its application, 139–163. http://dx.doi.org/10.1007/978-981-13-6068-8_6

  83. [83] Milev, S., Shaikh, M. S., Agrawal, S., Kloxin, C. J., Brand, A. S., & Tatar, J. (2023). Extending the service life of rigid pavement joints with self-healing sealants. Center for integrated asset management for multimodal transportation infrastructure systems (CIAMTIS)(UTC). https://trid.trb.org/view/1687824

  84. [84] Gransberg, D. D., Tighe, S. L., Pittenger, D., & Miller, M. C. (2014). Sustainable pavement preservation and maintenance practices. In Climate change, energy, sustainability and pavements (pp. 393–418). Springer. https://doi.org/10.1007/978-3-662-44719-2_14

Published

2025-01-15

How to Cite

Primus Okon *, K., Okokon Mkpa, E., & Udo, U. (2025). Dynamics of 21st Century Engineering Design: A Panacea to Durable, Sustainable, Stable and Lasting Pavements. Journal of Civil Aspects and Structural Engineering, 2(1), 14-31. https://doi.org/10.48314/jcase.v2i1.33

Similar Articles

21-25 of 25

You may also start an advanced similarity search for this article.